21711

120 MINUTES

1.	The (A)	Chronostratigra System		valent o Stage	of the	Geochro	onologic uni Series	it 'Epoch'. D)	Age	
2	,	•	,		1	,		,	-	
2.		first recognize			no h	abilis, i.e	e., the type	specimen	OH/, nick	named
		nny's Child' w Trinil Site, l			B)	Oldur	vai Gorge, T	Conzonio		
	A) C)	Grottes d'E			D)		River Bank,		ct Iava	
	C)	Offices u E	ingis, beig	iuiii	D)	5010	Kivei Dank,	Tillii, La	isi java	
3.	Choo	ose the correct	_		_				dia.	
	A)	Assam \rightarrow 0	Gujarat → `	Wester	n Of	fshore \rightarrow	Eastern Of	fshore		
	B)	Western Of	fshore $\rightarrow 1$	Eastern	Offs	shore \rightarrow	Gujarat → A	Assam		
	C)	Gujarat $\rightarrow A$	$Assam \rightarrow I$	Eastern	Offs	hore \rightarrow	Western Of	fshore		
	D)	Eastern Offs	shore \rightarrow C	ujarat	$\rightarrow A$	ssam →	Western Of	fshore		
4.	Whic	ch of the follov	ving is an e	xample	e of I	Relict or	Residual mo	ountains?		
	A)	Andes Mou	-	-	B)		Mountains			
	C)	Aravalli Mo	ountains		D)	Sierra	Nevada M	ountains		
5.	The	sloping sides o	f the valley	upon '	whic	h a dam i	rests.			
	A)	Gradient	•	Side wa		C)	Pier	D)	Abutme	ent
6.	The	artificial grou	ındwater re	echaroe	e me	thod wh	ich is the	least expe	ensive of	all the
•		ods available a		_				Tours only	-110170 01	
	A)	Flooding me		•	B)		method			
	C)	Induced rec			Ď)		m channel n	nethod		
7.	The i	isotopic dating	method in	which	the '	daughter	' is an effec	t in the cr	vstal rather	·than a
		hter isotope.				8		•	,	
	A)	Rubidium-S	Strontium n	nethod						
	B)	Carbon-14	dating meth	nod						
	C)	Fission trac	k dating me	ethod						
	D)	Rhenium-O	smium met	thod						
8.	Matc	ch the objects	in Colum	n-I wit	h co	rrespond	ing colour	standard i	in Column	-II for
		graphic maps				1	C			
		Column-I			Colu	ı <u>mn-II</u> \				
	a.	Water/Stream			1.	Black				
	b.	Grids and Roa	ds		2.	Blue				
	c.	Contours			3.	Brown				
	d.	Boundaries			4.	Red				
	A)	a-4, b-2, c-3	3, d-1		B)	a-2, b	o-4, c-3, d-1			
	C)	a-4, b-2, c-1	*		D)		o-4, c-1, d-3			
	,	, ,			,	,				

9.		vapour in air oi	•			nstrum	ient used for f	neasurin	g the presence o
	A)	Velometer		-	B)	Pycno	ometer		
	C)	Pilot tube			D)	Psych	rometer		
10.	The fi	rst fundamental	l step in	digital	image p	process	ing.		
	A)	Image Filtrati	on		B)	Image	e Acquisition		
	C)	Image Restora	ation		D)	Image	e Enhancemei	nt	
11.		vocate the 'Conned rocks in Br							e of highly
	A)		B)	Africa		C)	Russia	D)	Europe
12.	Which	of the following	ng is 'C	hrome I	Mica'?				
	A)	Lepidolite	B)	Zinnw	aldite	C)	Fuchsite	D)	Roscoelite
13.	Heavy	metals and nu		astes fal	l into th	ne categ	gory of:		
	A)	Fund pollutan			B)		stent pollutant	S	
	C)	Sustained poll	lutants		D)	Stock	pollutants		
14.		the quadrant ass and choose				quival	ent azimuth	bearings	in a geologica
	Quadr	ant Bearing				ıth Bea	ring		
	a.	N 36° E			1.	144 ^o			
	b.	N 36° W			2.	036°			
	C.	S 36° E			3.	216 ^o			
	d.	S 36° W			4.	324 ^o			
	A)	a-1, b-2, c-3,	d-4		B)	a-4, b	-2, c-1, d-3		
	C)	a-2, b-1, c-4,	d-3		D)	a-2, b	-4, c-1, d-3		
15.	The de	eepest and most	t power:	ful earth	nquakes	occur	at plate	boundar	ies.
	A)	Convergent			B)	Trans	form		
	C)	Divergent			D)	Trans	current		
16.	The fl	attest areas four	nd anyv	where or	n the Ea	rth hav	ring a regiona	l slope o	f < 0.5 degrees.
	A)	Salt flats			B)	Mud	flats		
	C)	Abyssal plain	S		D)	Lake	Baikal		
17.	The la	rgest carbonace	eous ast	eroid:					
	A)	Vesta	B)	Pallas		C)	Hygiea	D)	Ceres
18.	The m	ost extensive h		ologic u	nit in K	erala.			
	A)	Coastal Alluv	ium		B)	Allep	pey Beds		
	C)	Warkali Beds			D)	Later	ites		

19.	If we (A)	consider the gr Eastings		maps, the vo	ertical li C)	ines are classi Northings	fied as D)	Southings
20.	Which A) C)	of the follow Multipath sig No satellite r	gnals	iggest probl B) D)		taining Batter		ote areas?
21.	The mA)	ountain range Appalachian Cascade Mo	Mountains		Cordi	of Global Seis llera Mountai asus Mountair	ns	ts.
22.	The K belong A)		up	Karai Shales B) D)	Ariya	Cretaceous su llur Group ur Group	accession	of Trichinopoly
23.	The pr A) B) C) D)	Chlorite \rightarrow Staurolite \rightarrow	Chlorite → Biotite → Chlorite –	→ Staurolite Garnet → → Biotite →	→ Silli ➤ Stau · Kyar	manite \rightarrow Ga rolite \rightarrow Kyar nite \rightarrow Garnet tet \rightarrow Sillima	$\begin{array}{c} \text{nite} \to \text{Si} \\ \to & \text{Sill} \end{array}$	illimanite imanite
24.	flowag		nterstices iterial. exture		agioclas Hyalo		e occupi	rientation due to ed by glass or
25.	The no A)	umeral VIII in Strong Earth Moderate Ea	quake	ed Mercalli B) D)	Sever	ty Scale refers e Earthquake nt Earthquake		
26.	materi	, low-elevatio als that pile up Habili	p and that n	nay be inhal	oitable a	and covered by	y vegetat	
27.	The 'C A) B) C) D)	Genesis Rock' a sample of I a meteorite s a Mars rock the first ever	Moon rock ample that sample of M	fell in Arizo Mars Explor	ona dese ation Ro		s in 1971	
28.	The fin	rst manned ve Aluminaut		h the botton Alvin	n of the C)	Challenger D Trieste	eep. D)	Shinkai

29.	Match the following:		G 1G
	Forms		Crystal System
	a. Orthodome		Orthorhombic System
	b. Scalenohedron	2.	
	c. Macropinacoid	3.	Hexagonal System
	d. Sphenoid	4.	Tetragonal System
	A) a-3, b-2, c-1, d-4	B)	a-2, b-3, c-4, d-1
	C) a-3, b-2, c-4, d-1	D)	a-2, b-3, c-1, d-4
30.	The 'psephite' among the following	sedi	mentary rocks:
	A) Conglomerate	B)	Siltstone
	C) Sandstone	D)	Limestone
31.	The source of energy that falls in the	e cate	egory of non-renewable energy resource.
	A) Nuclear energy	B)	
	C) Solar energy	D)	Hydro energy
	,		
32.	The device used in ore beneficiation suspension based on the ratio of the		o classify, separate or sort particles in a liquid
	-		
	A) Hydroclone	B)	Knelson concentrator
	C) Reichert Cone	D)	Group
33.	Choose the incorrect pair from the for		
	A) Rhodonite - Manganese	B)	* *
	C) Goethite - Iron	D)	Azurite - Zinc
34.	The most abundant Sulphur isotope:	:	
	A) ^{32}S B) ^{33}S		C) ${}^{34}S$ D) ${}^{36}S$
35.	Match the following youngest polar	ity cl	nrons of Magnetic Time Scale with their ages
	<u>Chrons</u>		<u>Ages</u>
	a. Matuyama	1.	$0 - 0.8 \mathrm{Ma}$
	b. Gilbert	2.	$0.8 - 2.6 \mathrm{Ma}$
	c. Brunhes	3.	3.58 – 5.97 Ma
	d. Gauss	4.	2.6 – 3.59 Ma
	A) a-2, b-3, c-1, d-4	B)	a-3, b-2, c-1, d-4
	C) a-2, b-3, c-4, d-1	D)	a-3, b-2, c-4, d-1
	2, 5 3, 6 1, 4 1	D)	a 5, 5 2, 6 1, a 1
36.		h are	restricted to the interface between a competent
50.	and incompetent rock.		D 111 G
30.	•	\mathbf{D}_{I}	
30.	A) Mullion Structures C) Pencil Structures	B) D)	Rodding Structures Boudinage Structures

37.		r decreasing order of melting Olivine → Muscovite → Enstatite → Olivine → Hypersthene → Tremolite -	er of arrangement of minerals in the Bowen's Reaction Series melting points? vite									
38.		granite body marking the tions in the Aravalli craton. Erinpura Granite Berach Granite	boundar B) D)	y between the Archaean and Proterozoic Idar Granite Untala Granite								
39.		stereonet is <u>incorrect</u> ? All crystal faces are plotted	as poles te top of	f the crystal (ρ < 90°) will be plotted as '+' cle are in the same zone.								
40.	Choos water. A) B) C) D)	* * *	Calciu Magne Sodium	$sium \rightarrow Sodium$ $r \rightarrow Chlorine$								
41.	Match a. b. c. d. A) C)	the following Groups and Fo <u>Groups</u> Kaimur Group Semri Group Bhander Group Rewa Group a-2, b-4, c-1, d-3 a-1, b-3, c-2, d-4	1. 2. 3. 4.	s of the Vindhyan Supergroup: mations Bijaigarh Shales Jhiri Shales Sirbu Shales Suket Shales a-4, b-1, c-3, d-2 a-1, b-4, c-3, d-2								
42.		rganisms often referred to a c, due to their optical propertic Radiolarians B) Diato	es.	s of the sea' or 'living opals' or 'pearls of C) Foraminifers D) Ostracodes								
43.	Drift r A) C)	method of tunnelling is used to Hard Rocks Weathered Rocks	o constru B) D)	act tunnels in Broken Grounds Soft Grounds								

44.		main isotopic s h Uranium.	separation 1	nethod use	ed in modern ti	mes througho	out the wor	:ld to
		Centrifugal n	nethod	B)	Electromagne	tic method		
	C)	Diffusion me		D)	Chemical met			
45.		GM Counter car illation counters			adiations such as	$s \alpha, \beta, and \gamma r$	ays, wherea	as the
	A)	Infra-red rad	iations	B)	Microwave ra	diations		
	C)	Ionizing radia	ations	D)	Acoustic radia	ntions		
46.		ch among the fo	_		e category of 'Centration?	Good Floatation	n Frothers'	used
	A)	Soaps and Fa		B)	Lime and Sod	ium Sulphite		
	C)	Pine oil and I	Eucalyptus	oil D)	Soda Ash and	Sodium Silica	ite	
47.	the tw	vo sides of the l		ixis of the		and upthrown	sides chang	ge on
	A)	Radial faults		B)	Axial faults			
	C)	Reverse fault	S	D)	Wrench faults			
48.	The p	oathfinder eleme Sb	ent associate B) Au		nium in sandsto C) Se	ne type deposi D)	ts. Bi	
49.	The t	erm 'Comminu	tion' in any	ore dressin	ng process refers	s to:		
	A)	Sizing and So	reening	B)	Concentration	and Classifica	ation	
	C)	Drying and C	Calcination	D)	Crushing and	Grinding		
50.	DBM	IS in Geoinform	natics repres	ents:				
	A)	Digital Base	•					
	B)	Database Ma						
	C)	Database Mo	~ .					
	D)	Database Ma	nagement S	ystem				
51.		th among the inronous orbit?	following o	perational	Earth Observat	tion Satellites	is <u>not</u> in	Sun-
	Å)	Mega-Tropiq	ues	B)	RISA-1			
	C)	CARTOSAT	-2B	D)	INSAT-3A			
52.					the category of			ulting
	A)	Carbon dioxi		B)	Carbon tetrahy		iii iicaitiii.	
	C)	Sulphur diox		D)	Particulate ma	•		
53.	The a	angle of inclinat	ion generall B) 5°		l in a tilted aeria C) 3 ^O	l photograph D)	7 ⁰	

- 54. The inner core of the Earth is solid due to:
 - A) The immense pressure that exists in the centre of the Earth
 - B) The presence of solid nickel-iron metal in the centre of the Earth
 - C) The lesser temperature that exists in the centre of the Earth
 - D) The presence of oxygen, silicon and sulphur that readily form compounds with iron
- 55. According to W. M. Davis, landform is a function of:
 - A) Structure, Lithology and Time
 - B) Structure and Time
 - C) Process, Stage and Time
 - D) Structure, Process and Stage
- 56. The dendrochronological equation defining the law of growth of tree rings was proposed by:
 - A) Jacob Kuechler
- B) Alexander Catlin Twining
- C) A. E. Douglass
- D) Alexandr N. Tetearing
- 57. Match the names of the Molluscs with the Class to which they belong:

<u>Molluses</u>	
-----------------	--

a. Physa

<u>Class</u>Cephalopoda

b. Dentalium

2. Gastropoda

c. Nautilus

3. Scaphopoda

d. Nucula

- 4. Bivalvia
- A) a-2, b-3, c-1, d-4
- B) a-4, b-3, c-2, d-1
- C) a-4, b-1, c-2, d-3
- D) a-3, b-4, c-1, d-2
- 58. The Enhanced Thematic Mapper Plus (ETM+) scanner is used in:
 - A) Landsat 8

- B) Landsat 1 to 5
- C) Landsat 4 and 5
- D) Landsat 7
- 59. Which of the following statement is incorrect?
 - A) Intrinsic permeability is representative of the porous medium only.
 - B) Hydraulic conductivity is a function of only the fluid passing through the medium.
 - C) The rate of groundwater flow through an aquifer is proportional to the Hydraulic conductivity.
 - D) Saturated thickness times Hydraulic conductivity is a measure of Transmissivity.
- 60. Earth's seven major lithospheric plates considered for the 'Theory of Plate Tectonics' in their decreasing order of size are:
 - A) Pacific → N. American → Antarctic → African → S. American → Eurasian → Australian-Indian
 - B) Eurasian → Pacific → N. American → S. American → Antarctic → African → Australian-Indian
 - C) Pacific → N. American → Eurasian → African → Antarctic → Australian-Indian
 → S. American
 - D) N. American \rightarrow Eurasian \rightarrow African \rightarrow Pacific \rightarrow S. American \rightarrow Australian-Indian \rightarrow Antarctic

61.		spitting Tensile To	est on rocks						
	A)	Brazilian Test		B)	Standa	ard Penetratio	on Test		
	C)	Triaxial Compre	ession Test	D)	Uncor	nfined Compr	ession te	st	
62.		ng the most condwater exploration Pole-dipole Arra Schlumberger A	n, the array ay		as the stro Dipole		strength is		for
63.	The liby:	ithophiles are char	acterized by	y Ionic	bonds w	hile the Side	rophiles a	are character	ized
	A)	Van der Waals b	onds	B)	Coval	ent bonds			
	C)	Metallic bonds		Ď)	Hydro	gen bonds			
64.	The forma A) B) C) D)	hydrothermal dep ation. Mississippi Vall Skarn Volcanogenic m Porphyry	ey type		among	the following	ng, which	h is synger	netic
65.		most accepted met of deposits:	hod of samp	oling v	which is b	est suited to	bedded,	banded and	vein
	A)	Channel sampling	ng	B)	Grab s	sampling			
	C)	Face sampling	C	Ď)		sampling			
66.	Matcl Colu		ic facies of	Esko			their typ	ical mineral	s in
		Column-I			<u>Colun</u>				
		clogite Facies		1.		hane and Lau			
	b. (Greenschist Facies		2.	Chlorite	and Actinolit	te		
	c. E	Blueschist Facies		3.	Omphac	ite and Pyrop	e		
	d. Z	Zeolite Facies		4.		tite and Heula			
	A)	a-2, b-3, c-4, d-1	1	B)	a-3, b-	-2, c-4, d-1			
	C)	a-2, b-3, c-1, d-4	4	D)	a-3, b-	-2, c-1, d-4			
67.	Whic struct	h of the followingures?	ng falls in	the c	ategory o	of peneconte	mporaneo	ous sedimen	ıtary
	A)	Stylolites E	B) Mudo	cracks	C)	Beddings	D)	Concretion	ıs
68.	Non-o A) C)	depositional uncor Blended unconf Nonconformity		B) D)	Paraco	ty is synonyn onformity nformity	nous to		
69.	Whic A)	h one of the follow Precession E		n elem		ilankovitch cy Gravity	ycle? D)	Obliquity	
	/		*	-	,	•	,	1 2	

70.		n among the following				the youngest o	luring v	which land-ba	ased
		rmed prior to Quaterna	ry glacia						
	A)	Cryogenian		B)	Huroi				
	C)	Andean-Saharan		D)	Karoo)			
71.	Ameri	and bridge that occur ica and that was associng of sea levels.							
	A)	Beringia B)	Lemur	ia	C)	Doggerland	D)	Sinai	
	11)	Bernigia B)	Lemai	Iu	C)	Doggeriana	D)	Siliai	
72.	Which	n of the following pairs	is <u>inco</u>	rrect?					
	A)	Similar fold	_	Cons	tant laye	er thickness			
	B)	Box fold	_		ugate fo				
	C)	Wrench fault	_	Strik	e-slip fa	ult			
	D)	Schuppen structure	_	Thru	st fault				
73.		Snowball Earth Hypoth	iesis' wa			-			
	A)	Louis Agassiz		B)		F. Hoffman			
	C)	J. L. Kirschvink		D)	Luis A	Alvarez			
74.	Match	the items in Column-l	and Co	dumn-	II based	on Ramsay cl	assifica	tion of folds	
, . .	1,14,001	Column-I	ana co	.1411111	Colur	•	assiiica	1011 01 10145	
	a. C	lass 1B		1.		gons diverge			
		lass 3				gons arverge gons are paralle	<u>.</u> 1		
		lass 1C				hinner than hin			
		lass 2				nickness consta			
	u. C	1033 2		т.	Layer	nekness consta	iiit		
	A)	a-1, b-4, c-2, d-3		B)	a-1, b	-4, c-3, d-2			
	C)	a-4, b-1, c-2, d-3		D)	a-4, b	-1, c-3, d-2			
75.	Which	n of the following state	mont is	00***00	.+9				
13.	A)	L-tectonites indicate							
		S-tectonites have a de		_					
	B)					nation			
		L-S tectonites indicat							
	D)	B-tectonites have a fa	adric do	шпац	a by pia	mar elements.			
76.	Match	the phases of Disaster Phases	Manag	ement	-	vith the Activit	ies und	ertaken:	
	a.	Recovery		1.		eation of people	e		
	b.	Preparedness		2.		ing of personn			
	c.	Mitigation		3.		selling			
	d.	Response		4.		h and Rescue			
		-							
	A)	a-2, b-3, c-1, d-4		B)		-2, c-3, d-1			
	\mathbf{C}	a-3 b-2 c-1 d-4		D)	a_/ h	-4 c-1 d-3			

77.		most common and popular masts and vein deposits.	iining 1	method 1	used for steep	ly dippi	ng metalliferous
	A) C)	Cut and Fill method Block Caving method	B) D)	_	wall method and Pillar me	thod	
		C	ĺ				
78.	Whic corre	h of the following orthogeness ct?	is of ho	orses fron	n Lower Eocei	ne to Up	per Oligocene is
	A)	Epihippus → Orohippus			* *		* *
	B) C)	Orohippus → Mesohippus Epihippus → Eohippus -				_	
	D)	Eohippus → Orohippus					
79.	Whic	h of the following statements	regardi	ng the F	arth's magneti	c field is	incorrect?
17.	A)	The Earth's magnetic field i	_	-	arai s magneti	c nora n	mediteet.
	B)	The Earth's magnetic axis is					ation.
	C) D)	The total magnetic intensity The Earth's magnetic axis is			-	e poles.	
00	,	-					.: 11
80.		area of ocean or lake surface tion, thus generating waves.	over w	nich the	wind blows ii	n an ess	entially constant
	A)	Fetch B) Seich	ie	C)	Loch	D)	Gyre
81.	Matc	h Column-I and Column II.					
	_	Column-I		ımn-II			
		lanispiral Trochospiral		Globige Nodosai			
		rregular Spiral		Rotalia	. Ia		
		Ielicoid Spiral		Ammon	ia		
	A)	a-4, b-2, c-3, d-1	B)	a-4, b	-2, c-1, d-3		
	C)	a-2, b-4, c-3, d-1	D)	a-2, b	-4, c-1, d-3		
82.	The le	owest stage or age of the Quat	ernary	Period:			
	A)	Gelasian B) Green	nlandia	n C)	Calabrian	D)	Chibanian
83.	The u	unit cell that contains lattice po		•		wn as:	
	A)	Primary Unit Cell	B)		tive Unit Cell		
	C)	Secondary Unit Cell	D)	Centr	ed Unit Cell		
84.		vertical stratigraphic succession c example of	n that t	ypifies n	narine transgre	ssion an	d regression is a
	A)	Steno's Law of Superposition	on				
	B)	Walther's Law of facies					
	C)	Stoke's Law of sedimentation		4			
	D)	Stensen's Law of Lateral Co	onumun	ıy			
85.		concept of 'Biozone' in the bio	_	•		duced b	y:
	A) C)	William Smith Georges Cuvier	B) D)		e d'Orbigny t Oppel		
	\sim	2001503 Cavior	ט,	111001	· oppoi		

86.	The t	term 'Geochemistry' wa	is first used by	•		
	A)	F. W. Clarke	B)	C. F. Schönbein		
	C)	V. Goldschmidt	D)	O. C. Farrington		
87.	Bore	hole diameter is usually	•			
	A)	Gamma logs B)	S-P logs	C) Acoustic logs	D)	Caliper logs
88.	Matc	h Column-I and Colum	n II.			
		Column-I		Column-II		
		amser deposits, Bikaner		1. Kyanite		
		apsa-Buru deposits, Kh		2. Graphite		
		oderma deposits, Jhark		3. Gypsum		
	d. T	aliha deposits, Upper S	ubansırı	4. Mica		
	A)	a-1, b-3, c-4, d-2	B)			
	C)	a-3, b-1, c-4, d-2	D)	a-3, b-1, c-2, d-4		
89.		dastral map is a:				
	A)	•	B)	Medium scale map		
	C)	Large scale map	D)	Wall map		
90.		AFM diagram for graph	ical representa	ation of metamorphic 1	mineral	assemblages was
		duced by:	>	G 75		
	A)	P. Eskola	B)	G. Barrow		
	C)	J. B. Thompson	D)	A. Miyashiro		
91.	_	place on the Earth havin		gravity:		
	A)	Mount Nevado Huas				
	B)	Surface of the Arctic				
	C)	The Bermuda Triang				
	D)	Deepest point of Mar	nana Trench			
92.		al Resolution of 68m	X 83 m (or 6	0 m) and Spectral Ra	ange of	$0.5 - 1.1 \ \mu m$ is
		acteristic of:				
		Multispectral Scanne				
	C)	Hyperspectral Scann	ers D)	Thematic Mappers		
93.	The o	only pyroxene mineral t		_		
	A)	Omphacite B)	Augite	C) Jadeite	D)	Spodumene
94.		h the deltas with their re	-		ct answ	er.
		<u>Deltas</u>		iving Basins		
		Huang Ho		Caspian Sea		
		Amu Darya		Andaman Sea		
		Volga		Yellow Sea		
	d. I	rrawaddy	4.	Aral Sea		
	A)	a-4, b-3, c-1, d-2	B)	a-1, b-4, c-3, d-2		
	C)	a-3, b-4, c-1, d-2	D)	a-1, b-2, c-3, d-4		

95.	The Triassic succession of Spiti Valley is known as:									
	A)	Haimanta Gro		•	B)		var Group			
	C)	Kuling Group			D)	Lilang	Group			
96.	The ax	xial relationship	charac	teristic	of Mo	onoclinic	System:			
	A)	$a = b \neq c$	B)	a ≠ b =	= c	C)	$a \neq b \neq c$	D)	a = b = c	
97.	relation								which tells the section of stone	
	A)	Tensile Streng	gth		B)	Crush	ing Strength			
	C)		_		D)		verse Strength			
98.							e ability of soil	to tran	smit moisture in	
	all dir	ections regardle Capillarity		ny gravi Cohesi			Permeability	D)	Elasticity	
00	ĺ	-	ŕ				-4:	,	·	
99.	The II	andamental unit Group	B)	stratigr Memb	_	classifica C)	Formation	D)	Bed	
100	ĺ	1	,		C			,		
100.		n of the following	_	exampi						
	A)	Air temperatu	ire		B)		ation Density			
	C)	Soil Salinity			D)	Elevat	1011			
101.		space segment oped by ISRO h		autono	mous	s regiona	l satellite nav	igation	system IRNSS	
	A)		B)	10 sate	ellites	(C)	8 satellites	D)	7 satellites	
102.	Match the Latin names of Lunar Maria with the English names Latin Name English Name									
		In <u>Name</u> Iare Frigoris			English Name 1. Sea of Rains					
		fare Imbrium			1. 2.					
		lare Insularum			3.					
		Iare Nubium			4.					
	A)	a-1, b-4, c-3,	d-2		B)	a-1, b-	4, c-2, d-3			
	C)	a-4, b-1, c-3,			D)		1, c-2, d-3			
103.	The na	ame given to th	e black	areas of	f an ir	nterferenc	e figure in min	eral opt	rics.	
	A)	Isochrome	B)	Isohye		C)	Isogyre	D) 1	Isochore	
104.	The m	nineral which in	dicates			igh grade		ism:		
	A)	Zeolite	B)	Sillima	anite	C)	Staurolite	D)	Garnet	
105.		tectonic classif		of sedin					the category	
	A)	Foreland Basi			B)		ontinental Basi	ns		
	C)	Arch-Trench	Basins		D)	Rift E	Basins			

106.	The Spatial Analyst toolset that all combine them into a single output: A) Overlay Analysis Tool B) Conditional Tool C) Generalization Analysis Tool D) Raster Creation Tool	lows	you to	apply weights	to se	veral inputs and		
107.	b. Minettec. Spessartite	1. 1 2. 1 3. 1	<u>Colum</u> Hornble Hornble Biotite a		clase	als in Column-II.		
		B) D)		.4, c-3, d-2 -1, c-3, d-2				
108.	The mineral that does not occur in the Tilley tetrahedron: A) Nepheline B) Olivine		r-compo	onent normativ	ve syste	em of Yoder and Quartz		
109.	The textural term applied to S-shaped or reversed S-shaped trails of inclusions poikilitic crystals found in regionally metamorphosed rocks: A) Helicitic B) Blastopsammitic C) Blastophyric D) Nematoblastic							
110.	According to Dunham's classification of carbonate rocks, if the rock is grain supporter and if the grains have shapes that allow for small amounts of mud to occur in the interstices, it is called: A) Packstone B) Boundstone C) Wackestone D) Mudstone							
111.	· · · · · · · · · · · · · · · · · · ·	estim B) D)	Ferris	aquifer paramo method on's method	eters:			
112.	 a. Inosilicate b. Tectosilicate c. Sorosilicate d. Nesosilicate A) a-1, b-2, c-3, d-4	Miner 1. N 2. O 3. E	rals Tepheline Olivine Instatite Temimor a-1, b-	e	s:			

113.	 The second largest barrier reef in the A) New Caledonia Barrier Ree B) Red Sea Coral Reef C) Raja Ampat Reef D) Belize Barrier Reef 		rld.						
114.	Soil type containing sand, silt an moisture and humus. A) Podzol B) Pedal		y in roug C)	ghly equal pro Chernozem		s with nutrien	ts,		
115.	The two most common kinds of roc A) Granites and Granitoids C) Granites and Rhyolites	,							
116.	The only plausible parent body for A) Mars B) Jupite		meteorites C)	s. Saturn	D)	Uranus			
117.	The longest mainland coastline in I A) Maharashtra B) Tamil Nadu C) Andaman and Nicobar Islan D) Gujarat		s in:						
118.	The rhizome (root) on which Gloss A) Sigillaria C) Vertebraria	e e e e e e e e e e e e e e e e e e e							
119.	Match the lithostratigraphic units Equivalent. Lithostratigraphic unit a. Chinji Formation b. Tatrot Formation c. Nagri Formation d. Kamlial Formation A) a-4, b-2, c-3, d-1 C) a-2, b-4, c-1, d-3		ndard Eur Sarmatia Tortonia Helvetia Astian a-2, b	opean Equiva an an		ındard Europe	an		
120.	The 'most faithful' indicator plant (A) Ocimum centraliafricanum C) Calamine violet	For cop B) D)	Panda	sits: anus candelabi lagus bisulcati					
